首页> 外文OA文献 >Enhanced Benzaldehyde Tolerance in Zymomonas mobilis Biofilms and the Potential of Biofilm Applications in Fine-Chemical Production
【2h】

Enhanced Benzaldehyde Tolerance in Zymomonas mobilis Biofilms and the Potential of Biofilm Applications in Fine-Chemical Production

机译:运动发酵单胞菌生物膜中提高的苯甲醛耐受性以及生物膜在精细化工生产中的应用潜力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biotransformation plays an increasingly important role in the industrial production of fine chemicals due to its high product specificity and low energy requirement. One challenge in biotransformation is the toxicity of substrates and/or products to biocatalytic microorganisms and enzymes. Biofilms are known for their enhanced tolerance of hostile environments compared to planktonic free-living cells. Zymomonas mobilis was used in this study as a model organism to examine the potential of surface-associated biofilms for biotransformation of chemicals into value-added products. Z. mobilis formed a biofilm with a complex three-dimensional architecture comprised of microcolonies with an average thickness of 20 μm, interspersed with water channels. Microscopic analysis and metabolic activity studies revealed that Z. mobilis biofilm cells were more tolerant to the toxic substrate benzaldehyde than planktonic cells were. When exposed to 50 mM benzaldehyde for 1 h, biofilm cells exhibited an average of 45% residual metabolic activity, while planktonic cells were completely inactivated. Three hours of exposure to 30 mM benzaldehyde resulted in sixfold-higher residual metabolic activity in biofilm cells than in planktonic cells. Cells inactivated by benzaldehyde were evenly distributed throughout the biofilm, indicating that the resistance mechanism was different from mass transfer limitation. We also found that enhanced tolerance to benzaldehyde was not due to the conversion of benzaldehyde into less toxic compounds. In the presence of glucose, Z. mobilis biofilms in continuous cultures transformed 10 mM benzaldehyde into benzyl alcohol at a steady rate of 8.11 g (g dry weight)−1 day−1 with a 90% molar yield over a 45-h production period.
机译:生物转化由于其高产品特异性和低能耗而在精细化学品的工业生产中起着越来越重要的作用。生物转化中的一个挑战是底物和/或产物对生物催化微生物和酶的毒性。与浮游的自由生存细胞相比,生物膜具有增强的对恶劣环境的耐受性而闻名。运动发酵单胞菌(Zymomonas mobilis)在本研究中用作模型生物,以检查与表面相关的生物膜将化学品生物转化为增值产品的潜力。运动发酵单胞菌形成具有复杂三维结构的生物膜,该生物膜由平均厚度为20μm的微菌落组成,并散布着水通道。显微镜分析和代谢活性研究表明,运动发酵单胞菌生物膜细胞比浮游细胞更能耐受毒性底物苯甲醛。当暴露于50 mM苯甲醛1 h时,生物膜细胞平均表现出45%的残留代谢活性,而浮游细胞则完全失活。暴露于30 mM苯甲醛中三小时导致生物膜细胞中的残留代谢活性比浮游细胞高六倍。被苯甲醛灭活的细胞均匀地分布在整个生物膜中,表明抗药性机制不同于传质限制。我们还发现,对苯甲醛的耐受性增强不是由于苯甲醛转化为毒性较小的化合物。在存在葡萄糖的情况下,运动发酵单胞菌生物膜在连续培养物中将15 mM苯甲醛以8.11 g(克干重)-1天-1的稳定速率转化为苯甲醇,在45小时的生产时间内摩尔产率为90% 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号